Thursday, August 19, 2010
Adult Stem Cells could cure baldness
RESEARCHERS WORKING at the forefront of stem cell technology may also unexpectedly have come up with a cure for baldness according to an Irish Times report. They almost miraculously changed one cell type into a completely different one, but in the process ended up with skin cells complete with working hair follicles.
A treatment for baldness was not the goal when they started tinkering with cells from the thymus, a small but critical organ that helps run the body’s immune system to fight disease. Rather, they wanted to see how stem cells from the thymus would perform if transplanted into growing skin as a way to help burns victims.
The research teams from Switzerland and Scotland were more than surprised when they transplanted thymus cells into the skin of lab rats. They discovered that the cells forgot they were from the thymus and began performing just like healthy skin cells.
Despite the fact that progress in the development of new treatments is derived from research using adult stem cells many Governments and institutions are improperly funding research into embryonic stem cell research ignoring the fact that it entails the killing of human embryos, the taking of human life.
The thymus from which the unexpected results came, is a small organ in the upper chest, under the breastbone. Before birth and during childhood, the thymus helps the body make a type of white blood cell. These cells help protect you from infections.
According to the report, “These cells really change track, expressing different genes and becoming more potent,” said lead researcher Prof Yann Barrandon, head of the stem cell lab at the University of Lausanne and the local Polytechnique. Details of the team’s findings are published this morning in the journal Nature.
Being able to grow viable skin is a long-sought goal for doctors trying to treat burns patients, whether they come with hair follicles or not. Scientists have tried growing skin stem cells for transplantation, but the resultant tissues only last for a few weeks.
This new approach of changing one cell type into a completely different one seems to perform much better, with this new skin including follicles surviving for as long as a year.
The transformation of thymus cells into working skin cells is a startling result that has huge implications, suggests Prof Barrandon and his colleagues.
Importantly, this conversion process takes place without the need for genetic modification. The thymus stem cells seem to respond to the “local” environment, performing like skin cells because of their transplantation into the skin.
Their assumption is that these cells will readily change into other cell types in response to the environment into which they are placed.